Rotating With Quaternions - The Maths

Duncan J. Adamson

May 7, 2002

1 What Is A Quaternion

1.1 Imaginary Numbers

When calculating the square of a number, the answer is always greater than or equal to 0 .

Figure 1: $y=x^{2}$

This leads to the question, what is $\sqrt{-1}$. As we don't know, we will simply call it i, the unit imaginary componant.

$$
i^{2}=-1
$$

An imaginary number therefore is one with an normal componant and an imaginary component, e.g. $7 i, 2+3.6 i$ or $-1.1-8 i$.

Like normal numbers, there are arithmetic operations:

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
(a+b i)-(c+d i)=(a-c)+(b-d) i \\
(a+b i) *(c+d i)=(a * c-b * d)+(a * d+b * c) i \\
(a+b i) /(c+d i)=/ \operatorname{frac}(a+b i) *(c-d i)(c+d i)(c-d i)
\end{gathered}
$$

Each imaginary number q has a conjugate $q *$. This is defined as

$$
\begin{gathered}
q=a+b i \\
q *=a-b i
\end{gathered}
$$

1.2 Quaternions

Quaternions are extensions of imaginary numbers. Each quaternion has one normal componant and three imaginary componants i, j and k. These are defined such that:

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1 \\
i * j=-j * i=k \\
j * k=-k * j=i \\
k * i=-i * k=j
\end{gathered}
$$

A quaternion q and its conjugate $q *$ are defined as:

$$
\begin{gathered}
q=a i+b j+c k+d \\
q *=-a i-b j-c k+d
\end{gathered}
$$

Quaternions are often represented as vectors:

$$
q=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

Addition and subtraction operaters for quaternions are similar to those for imaginary numbers.

Multiplication is defined as:

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)=\left(\begin{array}{l}
a h+d e+b g-c f \\
b h+d f+c e-a g \\
c h+d g+a f-b e \\
d h-a e-b f-c g
\end{array}\right)
$$

2 How Do I Rotate With A Quaternion

If we want to rotate a point v around axis A (of unit length) by angle θ, we define two quaternions:

First, the quaternion for the point v that we want to rotate:

$$
p=\left(\begin{array}{c}
X_{v} \\
Y_{v} \\
Z_{v} \\
1
\end{array}\right)
$$

Then the quaternion for the rotation operation:

$$
q=\left(\begin{array}{c}
X_{A} * \sin \left(\frac{\theta}{2}\right) \\
Y_{A} * \sin \left(\frac{\theta}{2}\right) \\
Z_{A} * \sin \left(\frac{\theta}{2}\right) \\
\cos \left(\frac{\theta}{2}\right)
\end{array}\right)
$$

The result of the rotation, r can be found by simply calculating the following quaternion multiplication:

$$
r=q p q *
$$

3 Example

Given v, A and θ,

$$
\begin{gathered}
v=\left(\begin{array}{c}
3 \\
7 \\
-2
\end{array}\right) \\
A=\left(\begin{array}{c}
\frac{1}{\operatorname{sqrt(41)}} \\
\frac{-2}{\operatorname{sqrt(}(41)} \\
\frac{6}{\operatorname{sqrt(41)}}
\end{array}\right) \\
\theta=30
\end{gathered}
$$

We can prepare p and q,

$$
\begin{gathered}
p=\left(\begin{array}{c}
3 \\
7 \\
-2 \\
1
\end{array}\right) \\
q=\left(\begin{array}{c}
\frac{\sin 15}{\operatorname{sqrt(41)}} \\
\frac{-2 * \sin (15)}{\operatorname{sqrt(41)}} \\
\frac{6 \sin (15)}{\operatorname{sqrt(41)}} \\
\cos (15)
\end{array}\right)
\end{gathered}
$$

And finally calculate r.

$$
r=\left(\begin{array}{c}
\frac{\sin 15}{\operatorname{sqqt(41)}} \\
\frac{-2 * \sin (15)}{\operatorname{sqrt(41)}} \\
\frac{6 * \sin (15)}{\operatorname{sqrt(41)}} \\
\cos (15)
\end{array}\right)\left(\begin{array}{c}
3 \\
7 \\
-2 \\
1
\end{array}\right)\left(\begin{array}{c}
\frac{-\sin 15}{\operatorname{sqrt(41)}} \\
\frac{2 * \sin (15)}{\operatorname{sqrt(41)}} \\
\frac{-6 * \sin (15)}{\operatorname{sqrt(41)}} \\
\cos (15)
\end{array}\right)=\left(\begin{array}{c}
-0.44438 \\
7.774228 \\
-1.16786 \\
1
\end{array}\right)
$$

