Technical Design

Game Mechanics

This is certainly the bulk of the document. Right away you’ll see that any attempt to match up specific subsections with the game mechanics section of the functional spec is totally ludicrous. The perspective must be from the system out as opposed to the designers’ or users’ perspective. This starts with the hardware platform and the operating system, the use of externally provided code objects (DLLs, EXEs, drivers), and the delineation of internally generated code objects (if any). Then it breaks down the specific mechanics of game code stemming from the control loop.

Platform and OS

Indicate the hardware platform and the operating system and the versions supported. For PC/Mac games, mention the minimum system requirements and the target machine. If distributed on something other than a CD like a cartridge, indicate the target ROM.
External Code

Describe the source and purpose of all the code used but not developed by the project team. This includes OS code and pre-processing tools of the various game platforms, drivers and code libraries like DirectX, any acquired 3D API, or any other off-the-shelf solution.
Code Objects

Break down the purpose and scope of the various code objects coded, compiled and built into the EXE. If any out-of-process or in-process code libraries (DLLs) are used, break them down as well, but be sure to explain the use of object instancing and their persistence (like Direct Draw objects).
Control Loop

Every game has one. Be specific about how control is transferred from the start-up code to the shell and down into the main game code. Spell out the names of the functions in the core loop and what they will do, like the collision, movement and rendering routines. Explain the use of multi-threading, drivers, DLLs and memory management. Of course further details on the likes of multi-threading and memory management will be covered in the areas that they will be used most, like the rendering or sprite engine, sound code and AI.

This subsection summarizes the system and underlying framework that supports the core game play and game flow described in the functional specification.
Game Object Data

Read carefully over the functional spec at all the character/unit descriptions and game play elements. Then list and formulate all the data structures and their identifiers that are required to support the described attributes, functions and behaviours. To a certain extent, these will not be complete until the game physics and statistics and AI subsections are completely thought through and documented. Add statistics for user interface or any other area of the game that have unit or game play object specific data (i.e. icons, HUD displays, animation or special effect references, etc.).

If using object oriented programming methods, show the class inheritance tree and each class’ interface properties and functions. Describe the use of collections. Identify any variables that could possibly be made into global variables to increase performance, such as any objects variables that may be referenced multiple times during critical game routines such as collision, movement or rendering. Again, I’m not telling you how to program your game. I’m just trying to get you thinking about common technical issues, specifically in regard to optimizing data structures for neatness, versatility or speed.
Data Flow

Explain how data is stored, loaded, transferred, processed, saved and restored. While references should be made to data entry or processing tools, separate functional and technical specifications should be made for any complex or user intensive tools.
Game Physics and Statistics

This is the nitty gritty – movement, collision, combat – and probably the most fun to document and implement. However, it can also be the code that gets altered more than any other part of the program. Designers like to change things. It’s often only after they can play it for a while before they can really decide what is right. For this reason, you should plan to implement things as modular and flexible as possible. Put all the factors that control behaviour into data files read at run-time, so the designers can change and balance things at their leisure without involving coding changes and new builds. The specification should clearly identify the modularity and divisions between code and the data that controls it.

Define each function or procedure. Describe its purpose. Define what statistics control its behaviour (constants, variables etc.) and how they can be modified. Include the function prototype listing all the parameters. If using function pointers and function overloading, specify where the different versions of the function will be used. For example, you may have multiple functions that handle movement for the various unit types – one for land movement, one for air, one for water, etc. Briefly describe how the function will work. For complex functions, use pseudo code to specify exactly how you will code it. This is especially important for CPU intensive functions that do a lot of number crunching or are just called very often. Think about how they can be optimized to increase performance. Perhaps bit-shifting or macros could speed things up.

Artificial Intelligence

This often grows to a major section unto itself and is then scaled back when the schedule dictates the necessity to keep it simple. This shows a growing enthusiasm for complex AI, but a lack of time and resources to make AI anything more than simulated intelligence or scripted behaviours. Be mindful of this when you design the AI scheme. Try to accomplish the behaviours and decision making described in the functional specification without adding a huge layer of unnoticed and therefore unappreciated realism to the process. The basic rule of production applies here. If something that costs less and takes less time to build does the job, then don’t spend more time and money creating something else.

Of course, there are exceptions that should be mentioned. Sometimes something might take longer to build, but it saves the designers a lot of time working on their levels. Also, creating something more flexible or powerful may make it a valuable asset to the company for other projects or just make it more capable of handling design changes should they occur. Discuss these with your producer and director of development before making a decision.

Be sure to include the methods of manipulating the AI as dictated by the functional spec, i.e. whether it’s data driven or embedded into compiled code, and whether it’s a scripted language or a fixed set of variables or a combination of both.

AI should include path finding, target selection, tests and events to attach reactionary behaviours to, and other decisions made by characters, units or intelligent game elements involving game situations and unit statistics.

DO NOT include the actual scripts or data driving the AI. That’s production work. Merely be specific enough to explain how the decisions and behaviours will be derived. Break down the statistics used to control the behaviour.
Multiplayer

It’s extremely important that the implementation plan is reviewed from a multiplayer perspective. This subsection should break down all the multiplayer considerations in game mechanics and all the multiplayer specific requirements specified in the functional spec.

Multiplayer over multiple PCs (as opposed to console sharing or hot seat) has a lot of unique requirements that should be addressed. What connection methods and protocols are supported? Is it client-server or peer-to-peer? What are the packet sizes and how often are they sent? What is the structure of the packet? How are missed packets and latency issues handled? What messages are broadcast and what are sent to specific hosts? How many different messages are there and when are they used?
User Interface

Look and feel is one area of the design that undergoes the most changes during development. Therefore, it’s necessary that the programming for the GUI be as flexible as possible, separating game purpose from GUI function, so that changes that occur to the user interaction methods will not affect other areas of the game or require significant reprogramming. Create a variety of GUI objects (controls) using inheritance to maintain a consistent code interface to the events and the values. This way a slider bar can be exchanged with a text box or radial buttons with little or no changes to the calling functions. Assume that any of the GUI objects can be exchanged at any point in the project.

To this end, your documentation should be flexible and generic. While it should break down the GUI into the screens, windows and menus, it should not go any further into the specific interaction. Instead, document how the various GUI objects will work, wherever they are used. 

Make references to functions in the game mechanics documented in the previous section, but anything that’s interface related should go here. Explanation of the drawing and clipping routines of the graphics engine should be left for the Art and Video section, but certainly they should be referenced here in terms of view ports and HUD attachments and anything the player can interact with.

Document the names for any of the global variables, constants, macros, function names or interface properties, so that other programmers can refer to the documentation without having to dig through code. This also avoids replication and inconsistency and increases clarity.
Game Shell

List all the screens that make up the game shell - all the screens and windows other than the main play screens. These are derived from the flowchart in the functional specification, but may include some additional screens that the lead designer may have overlooked or brushed over (like installation or setup screens). Each item listed should be its own subsection with a description of its purpose, its scope (i.e. before or after level specific data is loaded), the pertinent values it will be accessing and setting, and what functions it will call.
Main Play Screen

These are the one or more screens in which the core of the game is played. Though many people think from the GUI perspective down to the complexities of what’s under the hood, this should be written from the low-level mechanics perspective (the engine and rotors) out to the GUI (the hood and the dash). This keeps it consistent even if the outward appearance of the GUI should change.
Art and Video

While this section in the functional spec pretty much just listed the art and video, the technical spec has to explain how the art and video will be stored, loaded, processed and displayed in the game. This includes the animation system, whether it’s 2D or 3D, and the video decompression and streaming system. Of course some of these might be off the shelf solutions, especially the video code. But all the interfacing should be mentioned here.
Graphics Engine

Whether you are using sprites, voxels or 3D-polygon rendering or a combination, break down their functions in very specific detail. While it’s only 2 sentences of description here, it will likely prove to be a very meaty piece of the spec. Describe areas like view ports, clipping, special effects, and the connection to the collision and movement functions described in the game mechanics.
Artist Instructions

Break out the details important to the artists, like resolutions, bit depth, palettes, file formats, compression, configuration file definitions and any other data the artists need to define to fold in the art. Consider what tools can be created to streamline the art pipeline, and indicate their specifications here or create separate specifications for the more complex or user intensive tools.
Sound and Music

Describe how sound will be loaded and played. Be specific about the use of mixing, DMA, multiple channels, 3D sound, and methods of determining priority. If using third party drivers, describe their interface and purpose. Be sure to address all of the requirements specified in the functional spec.
Sound Engineering Instructions

Break out the details important to the sound engineers and composers, like sample rates, the use of multiple channels, 3D sound definitions, sample length etc. If using MIDI, indicate the version to use and the number and type of instruments that can be used and possibly stored. Indicate the data path and file requirements including any specific configuration files that need to be created. Consider what tools can be created to streamline the sound pipeline, and indicate their specifications here or create separate specifications for the more complex or user intensive tools.
Level Specific Code

Based on the level design seeds in the functional specification, describe how code specific to those levels will be implemented and how it will accomplish the desired effect. Also describe how any other level specific code can be interfaced to the game code should the need arise to add more. In general, you should try to make any of the level specific code as generic and as flexible as possible so that it may be freely used to accommodate similar needs for other levels or new ideas.
