How To Calculate KXP Spline Derivatives

A Tips & Techniques document for use with the IPAS Toolkit

July 13, 1995

Introduction:

Several IPAS developers have requested information regarding how the
derivatives for 3DS spline interpolation are computed for KXP development.
This document contains a fairly uncommented example that will demonstrate
3D Studio's implementation of spline interpolation.

Example 3D Studio Key Interpolation Code

The following is an example of 3D Studio's key interpolation code for KXP
IPAS developers. Note that position keys are handled just like any other
track type except for rotations. Those are handled as detailed in the
CompAB() function below.

NOTE: This is unsupported code; use at your own risk.

static void CompElementDeriv( float pp, float p, float pn,
                                        float *ds, float *dd,float ksm,
                                        float ksp, float kdm, float kdp )
{
        float delm, delp;

        delm = p - pp;
        delp    = pn - p;
        *ds  = ksm*delm + ksp*delp;
        *dd  = kdm*delm + kdp*delp;
}

/*-------------------------------------------------------
This computes the derivative at key, as a weighted average of the linear slopes into and out of key, the weights being determined by the tension and continuity
        "ds" is the "source derivative", or "arriving derivative"
        "dd" is the "destination derivative" or "departing derivative"
----------------------------------------------------------*/
static void CompDeriv( PosKey *keyp, PosKey *key, PosKey *keyn )
{
        int i;
        /* Full TCB computation */
        float tm,cm,cp,bm,bp,tmcm,tmcp,ksm,ksp,kdm,kdp,delm,delp,c;
        float dt,fp,fn;

        /* fp,fn apply speed correction when continuity is 0.0 */
        dt = .5 * (float)( keyn->frame - keyp->frame );
        fp = ( (float)( key->frame - keyp->frame ) ) / dt;
        fn = ( (float)( keyn->frame - key->frame ) ) / dt;
        c  = fabs( key->cont );
        fp = fp + c - c * fp;
        fn = fn + c - c * fn;
        cm = 1.0 - key->cont;
        tm = 0.5 * ( 1.0 - key->tens );
        cp = 2.0 - cm;
        bm = 1.0 - key->bias;
        bp = 2.0 - bm;
        tmcm = tm*cm;   tmcp = tm*cp;
        ksm = tmcm*bp*fp;       ksp = tmcp*bm*fp;
        kdm = tmcp*bp*fn;       kdp = tmcm*bm*fn;

        for( i = X; i <= Z; i++ ) {
                CompElementDeriv( keyp->pos[i], key->pos[i], keyn->pos[i],
                             &key->ds[i], &key->dd[i], ksm, ksp, kdm, kdp );
        }

}

/* -----------------------------------------------------------
Compute the "a" and "b" terms at key "cur", which determine the incoming and outgoing tangents (in quaternion space )
 -----------------------------------------------------------*/
static int CompAB( RotKey *prev, RotKey *cur, RotKey *next )
{
        int i;
        float qprev[4],qnext[4],q[4],qzero[4];
        float qp[4],qm[4],qa[4],qb[4],qae[4],qbe[4];
        float tm,cm,cp,bm,bp,tmcm,tmcp,ksm,ksp,kdm,kdp,c;
        float dt,fp,fn;

        if( prev != NULL ) {
                if( cur->angle > TWOPI-.00001 ) {
                        COPY_POINT3( q, cur->axis );
                        q[3] = 0;
                        qlog( q,qm );
                } else {
                        qcopy( qprev, prev->quat );
                        if( qdot( qprev, cur->quat ) < 0 ) qnegate( qprev );
                        qlndif( qprev, cur->quat, qm );
                }
        }

        if( next != NULL ) {
                if( next->angle > TWOPI-.00001 ) {
                        COPY_POINT3( q, next->axis );
                        q[3] = 0;
                        qlog( q, qp );
                } else {
                        qcopy( qnext, next->quat );
                        if( qdot( qnext, cur->quat ) < 0 ) qnegate( qnext );
                        qlndif( cur->quat, qnext, qp );
                }
        }

        if( prev == NULL ) qcopy( qm, qp );
        if( next == NULL ) qcopy( qp, qm );

        fp = fn = 1.0;
        cm = 1.0 - cur->cont;
        if( prev && next ) {
                dt = 0.5 * (float)(next->frame - prev->frame );
                fp = ((float)(cur->frame - prev->frame))/dt;
                fn = ((float)(next->frame - cur->frame))/dt;
                c = fabs( cur->cont );
                fp = fp + c - c * fp;
                fn = fn + c - c * fn;
        }

        tm = .5*(1.0 - cur->tens);
        cp = 2.0 - cm;
        bm = 1.0 - cur->bias;
        bp = 2.0 - bm;
        tmcm = tm * cm;
        tmcp = tm * cp;
        ksm  = 1.0 - tmcm * bp * fp;
        ksp  = -tmcp * bm * fp;
        kdm  = tmcp * bp * fn;
        kdp  = tmcm * bm * fn - 1.0;

        for( i = 0; i < 4; i++ ) {
                qa[i] = .5 * ( kdm * qm[i] + kdp * qp[i] );
                qb[i] = .5 * ( ksm * qm[i] + ksp * qp[i] );
        }

        qexp( qa, qae );
        qexp( qb, qbe );

        qmul( cur->quat, qae, cur->a );
        qmul( cur->quat, qbe, cur->b );

        return TRUE;
}

/*
Subject: Re: Question re derivs.c (fwd)
It looks like deriv.c didn't contain the ease function -- just
the geometric derivatives.  In that case, here's the ease function:
*/

/*  Ease: remap parameter between two keys to apply eases

Call this with
   a = easeFrom of key[n],
   b = easeTo of key[n+1], and
 u = (t-t[n]/(t[n+1]-t[n])
-------------------------------------*/

local float Ease(float u, float a, float b) {
 float k;
 float s = a+b;
 if (s==0.0) return(u);
 if (s>1.0) {
  a = a/s;
  b = b/s;
  }
 k = 1.0/(2.0-a-b);
 if (u < a) return((k/a)*u*u);
 else if (u<1.0-b) return( k*(2*u - a));
 else {
  u = 1.0-u;
  return(1.0-(k/b)*u*u);
  }

Discuss this article in the forums


Date this article was posted to GameDev.net: 7/16/1999
(Note that this date does not necessarily correspond to the date the article was written)

See Also:
NURBS, Splines and Patches

© 1999-2011 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Click here!