1.The nerve impulse is a sudden change in the permeability of the membrane to sodium ions. The sodium ions carry a positive charge and displace the potassium ions, raising the voltage. This increased voltage is carried through the axon in successive steps. The speed is barely .5 to 120 meters per second. A volley of such nerve impulses are carried by the axon in a single direction only. The Oxford Companion to The Mind, 1987, Richard L.Gregory, Nervous System, P.W.Nathan, Pages 517.
2.Experiments by Karl Lashley in the 1940s showed that the skills learned by rats in maze running could not be obliterated by removal of particular cortical areas. The results of such ablations were generalised deficits proportional to the amount and not the region of the cortex removed. The Oxford Companion to The Mind, 1987, Richard L.Gregory, Memory: Biological Basis, Steven Rose, Page 458.
3.If the touch of a single hair is critical information, all surrounding sensory inputs are shut off to highlight the message. Similar automatic emphasising of contrasts takes place for both visual, auditory and sensory inputs. The brain actively participates in closing off irrelevant sensory inputs. Gray's Anatomy, 1989, 37th Edition, Neural Organisation, Inhibitory Circuits, Page 865.
4.The visual system categorises the perceived images in terms of edges, orientation of lines, and even in terms of isolation of moving lines. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebral Cortex, The Primary Visual Area, Page 562-565.
5.The average nerve cell responds within about 5 milliseconds of receiving a message. Gray's Anatomy, 1989, 37th Edition, Physiological Properties of Neurons, Page 878-879.
6.Current understanding is that there is a step by step conversion of dendritic input impulses into output impulses by a nerve cell. According to this understanding, a neuron has a resting voltage of about 80 mV, inside negative. This resting voltage can change gradually, by "graded potentials" or suddenly, through "action potentials". Gradual changes occur across membranes of dendrites, and the cell body. Such changes can go up, or down. They can inhibit the cell, or trigger an impulse from it. Action potentials reverse polarity across the membranes of axons. It is an all-or-none response, completed in about 5 milli seconds. Once initiated, the action potential spreads rapidly down the axon. They travel as impulses, maintaining a specific frequency. Gray's Anatomy, 1989, 37th Edition, Physiological Properties of Neurons, Page 879.
7."Of the numerous synaptic terminals clustered on dendrites and soma of a multipolar neuron, some are excitatory while those from other sources are inhibitory. Depending on the activity or quiescence of such sources, the ratio of active excitatory and inhibitory synapses continuously varies. Their effects summate..........., an action potential is generated and spreads along the axon as a nerve impulse." Gray's Anatomy, 1989, 37th Edition, Neural Organisation, Neurons, Page 864.
8.There are receptors for pressure, touch, pulling and stretching. There's even one to detect hair movement. Peritrtrichial receptors are cage like formations that surround hair follicles. A single axon receives data from many hair follicles and each follicle reports to two to twenty axons. Some receptor branches encircle the follicle and others run parallel to its long axis. Nociceptors are free nerve endings which convert energy from substances released by damaged cells into pain impulses. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Introduction and Neurohistology, Peripheral Nervous System, Cutaneous Sensory Endings, Physiological Correlates, Page 37.
9.Careful stimulation of the proper motor areas can invoke flexion or extension at a single finger joint, twitching at the corners of the mouth, elevation of the palate, protrusion of the tongue, and even involuntary cries or exclamations. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebral Cortex, Efferent Cortical Areas, The Primary Motor Area, Page 571.
10."Everyone knows what attention is. It is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneous objects or trains of thought. Focalisation, concentration of consciousness are its essence". The Principles of Psychology, 1890, William James. Quoted in: In the Theater of Consciousness, 1997, Bernard J. Baars, Page 95.
11."In landmark work using cognitive and brain imaging techniques, Michael Posner and his coworkers recently discovered a network of brain centres involved in visual and executive attention". In the Theater of Consciousness, 1997, Bernard J. Baars, Page 100.
12."Little is known about the physiology of memory storage in the brain. Some researchers suggest that memories are stored at specific sites, and others that memories involve widespread brain regions working together; both processes may be involved". "Memory," Microsoft Encarta 97 Encyclopedia.
13.Long-term potentiation (LTP) is "the enduring facilitation of synaptic transmission that occurs following the activation of a synapse by high-frequency stimulation of the presynaptic neuron." This phenomenon (LTP) has been found to occur in the mammalian hippocampus. Researchers believe that the hippocampus to be one of the major brain regions responsible for processing memories. Pinel, J. (1993). Biopsychology,(2nd Edition) Allyn & Bacon: Toronto.
14.In the early periods of evolution, "Nosebrains" dominated decision making systems of lower vertebrates. The smell of an object decided whether it was edible and could be consumed. If the odour was wrong, it was inedible and had to be avoided. The Human Nervous System 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Introduction and Neurohistology, Telencephalon, Page 8.
15.In the late 1920s, W.B.Cannon published a paper which suggested that emotional behaviour was still present when the viscera was surgically or accidentally isolated from the central nervous system. Different emotions had similar patterns of visceral responses. Perceptions of visceral responses were non-specific. Emotional responses were far quicker than visceral responses. Emotions do not follow artificial stimulation of visceral responses as a matter of course. The Oxford Companion to The Mind, 1987, Richard L.Gregory, Emotion, George Mandler, Pages 219-220.
16.Scar tissue in the cerebral cortex is one of the causes of epilepsy. When operating to remove the scar tissue, the surgeon has to stimulate the brain electrically on the conscious patient to locate the problem area. Excitation of certain parts of the temporal lobe produces intense fear in the patient. Other parts cause feelings of isolation, of loneliness or sometimes of disgust. The Oxford Companion to The Mind, 1987, Richard L.Gregory, Nervous System, P.W.Nathan, Page 527.
17.The septal area has been shown to be a pleasure zone for rats. Experiments were conducted on the animals with electrodes planted in this area where they could self stimulate themselves by pressing on a lever. They were observed to continue until they were exhausted preferring the effect of stimulation to normally pleasurable activities such as consuming food. The Oxford Companion to The Mind, 1987, Richard L.Gregory, Centers in The Brain, O.L.Zangwill, Page 129.
18.The limbic system of the brain contains a ring of interconnected neurons containing over a million fibres connecting the thalamus, the hippocampus, the septal areas and the amygdaloid body. The ring transmits impulses in both directions. In 1937 Papez postulated that these parts of the brain constitute a harmonious mechanism which may elaborate functions of central emotion as well as participate in emotional expression. Bilateral removal of the hippocampal formation and amygdaloid bodies in monkeys is followed by docility and lack of emotional responses such as fear or anger. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System, Circuits of the Limbic System, Page 268.
19.Current understanding of medical experts is that the limbic system is believed, to be intimately involved in seeking and capturing prey, courtship, mating, rearing of young, subjective and expressive elements in emotional responses and the balance between aggressive and communal behaviour. Gray's Anatomy, 1989, 37th Edition, The Limbic Lobe and Olfactory Pathways, Page 1028.
20."The total number of rods in the human retina has been estimated at 110-125 million and of the cones at 6.3-6.8 million (Osterberg 1935)." Gray's Anatomy, 1989, 37th Edition, The Visual Apparatus, Page 1197.
21.When mapping activity in the cerebral cortex, the tones heard by the ear were noted to be processed within a region of the cortex called the Heschl gyrus. This auditory area of the brain receives fibres from the medial geniculate nucleus in the thalamus. There is a spatial representation in the auditory area with respect to the pitch of sounds. Tones of different pitch or frequency produce brain signals at measurably different locations within the Heschl gyrus. It was laid out like a piano keyboard. A report by Dr.Christopher Gallen of the Scripps Clinic in La Jolla, California.
22.A study in 1959 by Powell and Mountcastle indicated that a vertical column of cells extending across all cellular layers in the somatic sensory cortex constitutes the elementary functional cortical unit. The columns form a barrel, varying in diameter from 200 microns to 500 microns, with a height equal to the thickness of the cortex. Neurons of one barrel are related to the same receptive field, are activated as a rule by the same peripheral stimulus and all the cells of a vertical column discharge at more or less the same latency following a brief peripheral stimulus. A barrel represents a piece of the cortex activated by a single axon from one of the specific thalamic nuclei. Similar barrels also exist for associate and commisural fibres, which transfer information between different regions of the cortex. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebral Cortex, Sensory Areas of the Cerebral Cortex, Page 555-556. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System, Histology of the Cerebral Cortex, Intracortical Circuits, Page 228.
23.In the early forties, Dempsey and Morison reported that repeated electrical stimuli into the "non-specific" nuclei of the thalamus resulted in widespread activity in the outermost cortical layers. The activity appeared to be of a "recruiting" nature. In 1960 Jasper again suggested that the synaptic termination of the fibres of the "non-specific" system in the cortex travels parallel to the surface and is widely distributed in all layers, but the principal functional processes appear to be within the outermost layers. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebral Cortex, Nonspecific Thalamocortical Relationships, Page 582-584.
24.Stephen Kosslyn and Martha Farah have shown extensively that visual imagery elicits activity in the same parts of the cortex as visual perception (Kosslyn, 1980). In the Theater of Consciousness, 1997, Bernard J. Baars, Page 74.
25.Throughout the growth of the nervous system, axons grow from one region to another and "map" on to specific target regions. The Oxford Companion to The Mind, 1987, Richard L.Gregory, Brain Development, Colwyn Trevarthen, Pages 101-110.
26.The information proceeds from primary areas of the cortex to secondary areas which co-ordinate the information from similar sensory receptors in the other half of the body. Neurons in the primary areas connect only to the secondary areas. All secondary areas in both hemispheres of the brain are interconnected. These areas assist binocular vision and stereo-phonic sound. The association areas receive information from every other secondary sensory region. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System, Medullary Center, Internal Capsule and Lateral Ventricles, Medullary Center, Page 242.
27. All sensory inputs are first received in the primary somesthetic area. Electrical stimulation of this area gives modified tactile senses, such as tingling, or numb sensations. If this area gets damaged, the related sensory inputs cannot be felt. If the somesthetic area is intact and there is damage in the somesthetic association area, awareness of general senses persists but significance of information with reference to previous experience is elusive. It is impossible to correlate the surface texture, shape, size, and weight of the object or to compare the sensations with previous experience. A patient is unable to identify a common object such as a pair of scissors held in the hand while his eyes are closed. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System, Functional Localisation in the Cerebral Cortex, The Somesthetic Association Cortex, Page 232-233.
28.Each of the 30,000 motor neurons, which control motor activity, receives approximately 20,000 synaptic contacts. The greatest number are from interneurons in the spinal tract. They run up and down the spinal pathway and synapse with the motor neurons. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System, Spinal Cord, Ventral Horn, Page 71.
29.Situated in the brain stem, the reticular formation is an early predecessor to the brain. The reticular formation is the recipient of data from most of the sensory systems. While damage to most other regions of the brain cause only selective defects, serious damage to the reticular formation results in prolonged coma. Cutaneous and olfactory stimuli to the reticular formation appear to be especially important in maintaining consciousness. The latter stimuli may be the reason for the success of smelling salts in restoring a person from a fainting fit. Experimental results show that electrical stimulation of the reticular formation can also induce sleep in animals. While there are processes in the reticular formation which raise the level of consciousness and alertness, there may be a co-existing process that induces sleep. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System, Reticular Formation, Page 145, 152.
30.Medical research confirms that the cerebellum is "necessary for smooth, co-ordinated, effective movement". Gray's Anatomy, 1989, 37th Edition, Cerebellar Dysfunction, Page 978.
31.Terminations of movements are affected by damage to the cerebellum. For a normal person, when the elbow is made to flex against resistance and the arm is released suddenly, contraction of opposing muscle fibres prevents overflexion. In cerebellar disease, flexion is uncontrolled and the patient may hit himself in the face or chest. This is called the "rebound phenomenon". With cerebellar problems, the patient converts a movement which requires simultaneous actions at several joints into a series of movements, each involving a single joint. When asked to touch his nose, with a finger raised above his head, the patient will first lower his arm and then flex the elbow to reach his nose. This problem is called "decomposition of movement". Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebellum - Functional Considerations, Page 434.
32.Each half of the body is represented in the cerebellar cortex. The cerebellum has an arrangement that represents all motor control functions spread over its cortical layer, with topographic precision. Researchers have mapped out localised areas on the cerebellar cortex for the control of leg, arm and facial movements which they found were identical with tactile receiving areas. Motor and sensory functions were integrated in the cerebellum. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebellum - Functional Considerations, Page 439.
33.The only fibres leaving the cerebellar cortex are the axons of a specialised group of neurons called the Purkinje cells. The Human Nervous System, 1983, 4th Edition, Murray L. Barr and John A. Kiernan, Regional Anatomy of the Central Nervous System - Cerebellum, Gross Anatomy, Cerebellar Cortex, Cortical Layers, Page 159.
34.In 1967, V.Braitenberg suggested the possibility of control of sequential events by the cerebellum. These neural relationships appear to create, in the cerebellum, an accurate biological clock. Impulses in fibres which link successive Purkinje cells, reach the cell dendrites at intervals of about a one ten thousandths of a second. Alternate parallel rows of Purkinje cells are excited, while the in-between rows are inhibited. Gray's Anatomy, 1989, 37th Edition, Mechanisms of the Cerebellar Cortex, Page 974.
35.The inferior olivary complex is the source of climbing fibres to all regions of the cerebellar cortex. In 1940 Brodal noted that in young cats and rabbits, all regions of the cerebellar cortex receive exquisitely marked out projections from the olivary nucleus. Destruction of this olivary neuron branch to the cerebellar cortex results in severe loss of co-ordination of all movements. Such damage appears to cause problems very similar to those caused by damage to the cerebellum, even though this bundle of nerves is only one of the many nerve tracts connecting the cerebellum. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebellum, Olivocerebellar Fibers, Page 422.
36.Sensory events occurring within a tenth of a second merge into a single conscious sensory experience, suggesting a 100-millisecond scale. But working memory, the domain in which we talk to ourselves or use our visual imagination, stretches over roughly 10 second steps. In the Theater of Consciousness, 1997, Bernard J. Baars, Page 48.
37.Mozart, Wolfgang Amadeus. (Based on his quotation in Hadamard 1945, Page 16). Taken from The Emperor's New Mind, 1989, Roger Penrose, Page 547.
38.The Principles of Psychology, 1890, William James. Quoted in: In the Theater of Consciousness, 1997, Bernard J. Baars, Page 130.
39.Homeostasis is the naturally maintained, relatively constant state within the body, maintained in a changeable environment. It is brought about by various sensing, feedback and control systems, supervised by a hierarchy of control centres. The frontal cortex, limbic system, hypothalamus, reticular formation and spinal cord constitute some of the components of this hierarchy. The concept that these centres mediate these controls is based on a wide base of experimental evidence gathered by studying the impact of destruction of localised topographical targets in animals. As higher levels are included with the spinal cord below the cut off section, more effective controls are retained. With transection below the hypothalamus, minor reflex adjustments of cardiovascular, respiratory and alimentary systems survive, but are not integrated and normal temperature is not maintained. With transection above the hypothalamus, separating it from the limbic system, effective controls are maintained within a moderate range of conditions. Innate drives and motivated behaviour are preserved, including feeding, drinking, apparent satiation, and copulatory responses. But such controls fail if environmental stresses exceed a certain range e.g., persistently high or low temperatures. Animals may attack, try to eat, drink or copulate with inappropriate objects. But if the connections between the limbic system and the hypothalamus survive and only the frontal cortex is cut off, normal homeostasis is preserved even in a wide range of adverse conditions. Gray's Anatomy, 1989, 37th Edition, Functions of the Hypothalamus, Page 1011.
40.The prefrontal area forms a part of the frontal lobe of the cortex including much of the frontal gyri, orbital gyri, most of the medial frontal gyrus and the anterior part of the cingulate gyrus. While all other regions of the cortex communicate mostly within finite regions, the prefrontal lobe has abundant connections with the association cortex of the three sensory lobes. Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebral Cortex, Prefrontal Cortex, Page 587.
41.Medical evidence suggests that patients with extensive frontal lobe damage show disregard for the general tenets of behaviour and a marked lack of concentration. Some years ago, a procedure called prefrontal lobotomy, or leucotomy was widely used, either for patients with intractable pain or in attempts to modify the behaviour of severely psychotic patients. The basic operation disconnected the prefrontal area from the lower regions by cutting its nerve fibre connections. Many institutionalised patients were able to return home and even to resume their former activities. The results of these operations were evaluated in a number of publications. While there was abolition of morbid anxiety and obsessional states, Freeman and Watts noted a lessening of the consciousness of self. The patients were "tactless and unconcerned in social relationships, with an inability to maintain a responsible attitude". Human Neuroanatomy, 1975, 6th Edition, Raymond C. Truex and Malcolm B. Carpenter, The Cerebral Cortex, Prefrontal Cortex, Page 588.
42.Lorenz, Konrad, 1972. As quoted in The Emperor's New Mind, 1989, Roger Penrose, Page 551.