
Geom

Adam Freidin

May 6, 2002

The mathematical reasoning and spirit of the geom library,
c©2002, Adam Freidin, and the mathematical world.

This document created with LATEX 2ε, XY-pic and vim Thanks to everyone for
everything.

1

Contents

1 Introduction 4
1.1 Types and Conventions . 4

1.1.1 Conventions Used in this Document 4
1.1.2 Conventions Used in the geom Library 4
1.1.3 Conventions in Common 4
1.1.4 Types . 5
1.1.5 Operations . 6

2 A Couple of Preliminaries 6
2.1 int geomZcC(z) . 6
2.2 R geomSetEpsilon(ε) . 6
2.3 GEOM CHECK MODE . 7

3 Point Functions 7
3.1 void geomXXdZ(z, ~x1, ~x2) 7
3.2 void geomXXdV(~v, ~x1, ~x2) 7

4 Line Functions 8
4.1 void geomLXdV(~v, ~o, ~d, ~x) 8
4.2 void geomLXnX(~x, ~o, ~d, ~x) 8
4.3 void geomLXdZ(z, ~o, ~d, ~x) 8
4.4 checked geomLLdV(~v, ~o1, ~d1, ~o2, ~d2) 9
4.5 checked geomLLdZ(~v, ~o1, ~d1, ~o2, ~d2) 9
4.6 checked geomLL*(OUT PUT , ~o1, ~d1, ~o2, ~d2) 10

4.6.1 checked geomLLnX(~x, ~o1, ~d1, ~o2, ~d2) 11
4.6.2 checked geomLLnnXX(~x, ~x2, ~o1, ~d1, ~o2, ~d2) 11
4.6.3 checked geomLLndXV(~x, ~v, ~o1, ~d1, ~o2, ~d2) 11
4.6.4 checked geomLLndXZ(~x, z, ~o1, ~d1, ~o2, ~d2) 11

5 Plane Functions 11
5.1 void geomPXdZ(z, P, ~x) . 11
5.2 void geomPXdV(~v, P, ~x) 12
5.3 void geomPXnX(~x, P, ~x) . 12
5.4 checked geomPRxZ(z, P, ~o, ~d) 12
5.5 checked geomPRdV(~v, P, ~o, ~d) 12
5.6 checked geomPLxX(~x, P, ~o, ~d) 13

2

5.7 checked geomPPxL(~o, ~d, P, Q) 13
5.8 void geomRXpZ(z, ~o, ~d, ~x) 13
5.9 checked geomPRpR(~o, ~d, P, ~o, ~d) 14

6 Interpretive Functions 14
6.1 checked geomViU(~u, ~v) . 14
6.2 checked geomSiR(~o, ~d, ~a, ~b) 15
6.3 checked geomTiP(P, ~p1, ~p2, ~p3) 15
6.4 void geomRiP(P, ~o, ~d) . 16
6.5 checked geomVVXiE(~e, ~v1, ~v2, ~x) 17

7 Special Functions 17
7.1 void geomLXZrX(~x, ~o, ~d, ~x, z) 17
7.2 void geomLRZrR(~o, ~d, ~ol, ~dl, ~or, ~dr) 17
7.3 void geomTXcC(c, ~p1, ~p2, ~p3, ~x) 18
7.4 void geomTVXcC(c, ~p1, ~p2, ~p3, ~v, ~x) 18
7.5 void geomTRcC(c, ~p1, ~p2, ~p3, ~o, ~d) 18
7.6 void geomPDXcC(c, P, ~a, ~b, ~x) 19
7.7 checked geomSXcC(c, ~a, ~b, ~x) 19
7.8 checked geomVVpV(~v, ~v, ~r) 19
7.9 void geomVUpV(~v, ~v, ~r) . 20
7.10 void geomRZiX(~x, ~o, ~d, z) 20

A Extras 21
A.1 Types and operations as explained in geom.h 21

3

1 Introduction

Geom is a library that solves many simple common geometrical problems in
3D. It provides functions which find the intersection, distance, class (in/out),
nearest point, and interpretation of 3D objects.
Some of the things this library finds are:

The intersection of a line or ray with a plane.
The distance of a point from a plane, line or another point.
The distance of a point “along” a ray.
The class of a point compared to a plane, (front/back/on).
The closest point on a plane or line to some point.
The plane “interpreted” from a triangle.

1.1 Types and Conventions

1.1.1 Conventions Used in this Document

Output variables will be bold faced.

Implementation details will be left to the programmer.

The distinction between floats and doubles is ignored as the library handles
both equally well.

1.1.2 Conventions Used in the geom Library

All function names are prefixed by geom, followed by input types, operation,
and output types. Example:

All function names in the actual library are suffixed by either a lowercase
‘f’ or ‘d’, to indicate either a float or double version.

1.1.3 Conventions in Common

Function type labels and variables in general share a 1–to–n corespondence,
for example a triangle is passed to a function point by point, not as one big
structure. The choice is made for a fine blend of minimum data movement
and speed.

4

Each type is represented by a single mnemonic charcter, some better chosen
than others. Mnemonic characters in the following section will be represe-
nented by BIG BLOCK LETTERS.

1.1.4 Types

A Triangle (~p1, ~p2, ~p3) is represented by its verticies.

A Line (~o, ~d) will be represented by its two parts, origin (~o) and direction

(~d).

Directions (~d) are unit vectors. Origins lie on the line.

A Ray (~o, ~d) has exactly the same representation as a line (~o, ~d).
In this library a ray is bi–directional, but one direction is considered

negative. (e.g. plane-ray intersection does not fail if the ray points away, it
just results in a negative distance).

A Segment (~a, ~b) is defined by its endpoints.

An eDge is a segment, where ~a → ~b is ordered counter-clockwise around a
polygon.

A Plane (P) is defined by the equation Pax+Pby+Pcz+Pd = 0 where the
plane normal P~n is (Pa,Pb,Pc) and the distance along the normal from the
origin is −Pd.
A twospace line (Q, Q), is likewise defined with the equationQax+Qby +Qc = 0.
where ‖(Qa, Qb)‖ = 1.

A Vector (~v) is is just an ordered triple, ~v = (x, y, z). With x, y, z ∈ R of
course.

A point (~x, X) has the same format as a vector but represents a position in
space.

A 2–vector (~w, W) is an ordered pair, ~w = (x, y).

A 2–point (~e, E) is an ordered pair, ~e = (x, y).

A scalar (z, Z) is just a real number.

A Class (c) is just an integer, with “magic” significant values.

A (quaternion) rotation of a point ~x around a vector ~v by an angle θ will be

written as: ~x
θ
	~v

A projection of ~v onto ~d will be written as: ~v∠ ~d.

5

1.1.5 Operations

x means intersection. In the case of geomPRxZ this is the distance along the
ray before it intersects the plane. However geomPLxX should be used to find
the point of intersection, and geomPRdV to find the distance vector along the
ray.

d means distance or difference, again, often it is interpreted in either vector
or scalar terms.

c means classification, usefull for checking non-fuzzy relationships between
objects. Examples include point–plane relationships (front/on/back) and
point triangle (interior/exterior) relationships.

n means nearest, somewhat similar to projection, these functions find the
closest point on a plane or line to a reference point.

i means interpret, these function convert segements to lines and triangles to
planes.

p means project, somewhat similar to nearest, in the sense that the point
“projected” onto a plane is the nearest point. But project also has the
operations of “projecting” a line/ray onto a plane, and of course, projecting
a vector onto a vector.

2 A Couple of Preliminaries

Ignore these, these aren’t geometrical.

2.1 int geomZcC(z)

Classifies a number as big enough.
Although it’s not really part of the geometry library, it is potentially the

most commonly used function. If checking is enabled, then geomZcC will be
available. It simply returns true iff |z| > ε. Any divisor will be checked
through this function, and the dividing function will return true iff all checks
pass.

2.2 R geomSetEpsilon(ε)

Sets the library’s epsilon (ε) value (See above).

6

2.3 GEOM CHECK MODE

Using the preprocessor, you can coerce geom into one of three modes.
1. Fast mode, no checking is performed. For the self assured.
2. Check–cull mode, division checks are performed and calculations abort

when failure occurs. Use this mode only if you want the speed and are willing
to check return values all the time.

3. Check–continue mode, division checks are performed, but the library
continues blithely on anyway. Use this mode if you care about saftey, but
want every scrap of (in)stability you can get.

3 Point Functions

3.1 void geomXXdZ(z, ~x1, ~x2)

Returns a scalar distance between the points ~x1 and ~x2.

// x

OO
y

oooooooooo

wwz

~x1

~x2

gg

EEmmmmmmmmmmmm

66~x2 − ~x1
RRRRRR
◦

It should be easy to see that the distance is given by the length of the
difference vector ~x1 − ~x2.

z ⇐ ‖~x1 − ~x2‖

3.2 void geomXXdV(~v, ~x1, ~x2)

Returns a vector difference between the points ~x1 and ~x2.

~v⇐ ~x1 − ~x2

7

4 Line Functions

4.1 void geomLXdV(~v, ~o, ~d, ~x)

This function calculates the vector from a point to the closest point on a line.
For the vector to be a minimum vector it must be perpendicular to the

line. The standard method for doing this is to figure out what part of the
vector from ~x to ~o (the only point–to–line vector we have to work with) points
in the direction of the line, and subtract that. What remains is a vector that
is perpendicular to the line, and (starting from ~x) lands on it.

OO

�
�
�
�
�
�

�������������������

~o− ~x

~o

oo •◦

�
�

�
�

__
(~o− ~x)− ((~o− ~x) · ~d)~d

~v⇐ (~o− ~x)− ((~o− ~x) · ~d)~d

4.2 void geomLXnX(~x, ~o, ~d, ~x)

Calculates the closest point on a line to a point.
Just add the point to the distance vector, and we have it:

~x⇐ (~o− ~x)− (~o− ~x) · ~d
‖~d‖

+ ~x

4.3 void geomLXdZ(z, ~o, ~d, ~x)

Calculates the distance vector
Although we could reuse our previous result (geomLXdV), and just ex-

tract its magnitude, there is a faster, slightly more elegent solution for this
problem.

Just like the dot product measures how close two vectors are in direction
(~a ·~b = ‖~a‖‖~b‖ cos θ), the magnitude of the cross product measures how far

8

away they are in direction1 (‖~a×~b‖ = ‖~a‖‖~b‖ sin θ).
The distance of a point from a line is exactly ‖(~x− ~o)‖ sin θ, where theta

measures the angle between ~d and (~x− ~o).

�������������

θ

~o

‖~x− ~o‖ sin θ
llll
◦ ~x

OO~d

since ‖~d‖ = 1.
So we can formulate the distance as

z⇐
√

((~x− ~o)× ~d) · ((~x− ~o)× ~d)

4.4 checked geomLLdV(~v, ~o1, ~d1, ~o2, ~d2)

Computes the shortest vector that spans the lines (from L1 to L2).
The distance between two lines can be found by simply projecting the

vector (~o2 − ~o1) onto (~d1 × ~d2).
ooooooooooooooooooooooooooooooooo UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

• •
^^^^^^^^^^^^^^^^^^^^^~o1

~o2
jj

77

◦
◦ ◦
◦ ◦
◦

◦
◦
◦

◦ OO ~d1 × ~d2

1q1q1q1q1q1q1q1q1q1q1q1q1q
•

U U U U U U

As the illustration hopefully makes clear, the projection of (~o2−~o1) onto

(~d1 × ~d2) yields the smallest vector that connects the two lines.

~v⇐ (~o2 − ~o1) · (~d1 × ~d2)

‖~d1 × ~d2‖2
(~d1 × ~d2)

4.5 checked geomLLdZ(~v, ~o1, ~d1, ~o2, ~d2)

Returns the distance between two lines.

1Or you could say that it measures the size of the directed plane spanning ~a and ~b,
hehe

9

We could just use the length of the result of geomLLdV.∥∥∥∥∥(~o2 − ~o1) · (~d1 × ~d2)

‖~d1 × ~d2‖2
(~d1 × ~d2)

∥∥∥∥∥
But this simplfies to

z⇐ (~o2 − ~o1) ·
~d1 × ~d2

‖~d1 × ~d2‖

4.6 checked geomLL*(OUT PUT , ~o1, ~d1, ~o2, ~d2)

This section describes all of the remaining geomLL functions. These functions
all compute the things related to the nearest points on a pair of lines. This
requires solving a simple linear equation. The system being the intersections
of the lines projected into the 2–space plane in which both lie.

In order to find the nearest point on (~o1, ~d1) to (~o2, ~d2) we first solve for
the intersection of the lines in a projective 2–space αβ.

ooooooooooooooooooooooooooooooooo UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

• •
^^^^^^^^^^^^^^^^^^^^^~o1

~o2
jj α

77β

+3
jjjjjjjjjjjjjjjjjjj

44 β
?????????????

__ α

•
~o2
′

•
~o1
′◦

We already have some nice αβ directions, (~d1 and ~d2).

~o1
′ = (~o1 · ~d1, ~o1 · ~d2)

~o2
′ = (~o2 · ~d1, ~o2 · ~d2)

~d1

′
= (~d1 · ~d1, ~d1 · ~d2)

~d2

′
= (~d2 · ~d1, ~d2 · ~d2)

Now we can solve for

~o1
′ + ~d1

′
t = ~o2

′ + ~d2

′
u

in both α and β, resulting in

t =
~d2β(~o1α − ~o2α)− ~d2α(~o1β − ~o2β)

~d2α
~d1

′
β − ~d1α

~d2

′
β

10

Sorry it’s complicated, but the problem is hard.
Note that ~o1 + ~d1t is nearest point on (~o1, ~d1) to (~o2, ~d2).
All of the other solutions are mearly offsets (of geomLLdV) from this point

and calculations of distance, etc. . .
The solutions are:

4.6.1 checked geomLLnX(~x, ~o1, ~d1, ~o2, ~d2)

~x⇐ ~o1 + t~d1

4.6.2 checked geomLLnnXX(~x, ~x2, ~o1, ~d1, ~o2, ~d2)

~x⇐ ~o1 + t~d1

~x2 ⇐ ~x + ~d1 × ~d2

4.6.3 checked geomLLndXV(~x, ~v, ~o1, ~d1, ~o2, ~d2)

~x⇐ ~o1 + t~d1

~v⇐ ~d1 × ~d2

4.6.4 checked geomLLndXZ(~x, z, ~o1, ~d1, ~o2, ~d2)

~x⇐ ~o1 + t~d1

z⇐ ‖~d1 × ~d2‖

5 Plane Functions

5.1 void geomPXdZ(z, P, ~x)

Finds the distance of a point from a plane.
As mentioned above, our stipulation that P~n is a unit vector implies that

the distance can be found by evaluating the plane equation

z⇐ Pax+ Pby + Pcz + Pd

or, more succinctly,
z⇐ ~x · P~n + Pd

11

5.2 void geomPXdV(~v, P, ~x)

Finds the vector that points from a point ~x to the nearest point on a plane.
This vector will be parallel to P~n and have the length of the distance from

the plane. However, if the point is in front of the plane, then it’s distance
will be positive, but the direction to the plane is in the opposite direction.
A negative solves that problem.

~v⇐ −(P~n · ~x+ Pd)P~n

5.3 void geomPXnX(~x, P, ~x)

Finds the closest point on a plane, given a point.
This point will be the same as the sum of the difference vector to the

plane, and the original point.

~x⇐ ~x− (P~n · ~x+ Pd)P~n

5.4 checked geomPRxZ(z, P, ~o, ~d)

Finds the distance to a plane along a ray (distance to intersection).
Note that the distance along the ray will be the distance from the origin

of the ray divided by the component of ray direction towards the plane. The
component of ray direction towards the plane is −P~n · ~d. The distance from
the plane is the now familiar P~n · ~o+ Pd.

Together we have

z⇐ − P~n · ~d
P~n · ~o+ Pd

5.5 checked geomPRdV(~v, P, ~o, ~d)

Finds the distance vector along a ray to a plane.
This is clearly ~d scaled by the result of geomPRxZ.

~v⇐ − P~n · ~d
P~n · ~o+ Pd

~d

12

5.6 checked geomPLxX(~x, P, ~o, ~d)

Finds the intersection of a line and a plane.
This is clearly the sum of ~o and the result of geomPRdV.

~x⇐ ~o− P~n · ~d
P~n · ~o+ Pd

~d

5.7 checked geomPPxL(~o, ~d, P, Q)
Finds the line of intersection of two planes.

Sounds hard doesn’t it? Well, it comes down to two problems:
1. Find ~o, a point on the line of intersection
2. Find ~d, the direction of the line of intersecton
Problem 1 is easy. ~d is perpendicular to the normals of the planes.

~d⇐ P~n ×Q~n
‖P~n ×Q~n‖

Problem 2 is solved by realizing that ~o is an intersection of a line on P
with Q. Unfortunately the math kind of explodes here, but if you stare at
this equation and the equation for geomPLxX you’ll se that they share the
same form, (with an extra correction term to account for P~n ×Q~n ×P~n not
being normalized, which, by the way, is my method for creating a vector in
the “direction” of the center term, but perpendicular to the outer term).

~o⇐ (−PdP~n)− Q~n · (P~n ×Q~n × P~n)

Q~n · (−PdP~n) +Qd
P~n ×Q~n × P~n
‖P~n ×Q~n × P~n‖2

There’s an optimization that lets you remove the ‖P~n ×Q~n ×P~n‖2 term
by doing a little extra work (in code only), can you spot it?

5.8 void geomRXpZ(z, ~o, ~d, ~x)

Finds the projected distance of a point along a ray.
This is the length of the vector from the origin of the ray to point along

the ray. The dot product does this nicely...

13

OO

jjjjjjjj
◦

(~x− ~o) · ~d

~d
�������������

II•

θ

~o

~x

So
z⇐ (~x− ~o) · ~d

5.9 checked geomPRpR(~o, ~d, P, ~o, ~d)

Projects a ray onto a plane.
The origin of the new ray is the closest point on the plane to the origin

of the old ray (see geomPXnX):
We can do this by projecting the origin onto the plane, and removing the

component of d in the direction of the plane normal.

///////

///////
/o

OOP~n

P

•

�
�
�
�

•

◦

~o

%%
~d

L
L

L
L

OOOO

''

LLLLLL

~o
//
~d

%%

~d′

Thus we have
~o⇐ ~x− (P~n · ~x+ Pd)P~n

from geomPXnX, and

~d⇐
~d− P~n·~d

‖P~n‖
P~n∥∥∥~d− P~n·~d

‖P~n‖
P~n
∥∥∥

6 Interpretive Functions

6.1 checked geomViU(~u, ~v)

Normalizes a vector, (a normalized vector has a length of 1).

14

All you have to do to ensure that a vector has a length of 1 is divide it
by its length.

~u⇐ ~v

‖~v‖

6.2 checked geomSiR(~o, ~d, ~a, ~b)

Interprets a line segment as a ray.
Rays are a combination of a point and a (normalized) direction.

~o⇐ ~a

~d⇐
~b− ~a
‖~b− ~a‖

6.3 checked geomTiP(P, ~p1, ~p2, ~p3)

Calculates the plane in which the triangle lies.
Planes are described by the equation

Pax+ Pby + Pcz + Pd = 0

This is a rather meaningless definition, except that on further inspection,
the vector (Pa,Pb,Pc) is normal to the plane and Pd describes a negative
distance from the origin.

A plane P may then be described by the pair (~n,−d). If ‖~n‖ = 1 then
−d is indeed the distance from the origin along ~n. In addition, the plane
equation Pax+Pby+Pcz +Pd is then the (signed) distance from the plane.

Everyone knows that the cross product is great for generating normals,
so ~n will be in the direction of any two edges crossed (~p2 − ~p1)× (~p3 − ~p1).

//x

OO y

wwwwwwww

{{ z

tttttt

::

RRRRRRRR

))/
//////

������

LL

~p1

~p2

~p3

(~p3 − ~p1)× (~p2 − ~p1)
◦

15

But even though it is a normal, it is not in general a unit (normalized)
vector. So we must normalize it:

~n⇐ (~p2 − ~p1)× (~p3 − ~p1)

‖(~p2 − ~p1)× (~p3 − ~p1)‖

To find d, we need to figure out how far away from the origin for some
point on the plane, so we take one of the triangles points and dot it with the
normal to discover how far along the normal the plane lies.

//x

OO y

wwwwwwww

{{ z

t
t

t
/

/
/

/

R R R R

�
�

�

LL ~n

������

LL ���������

•
~p1

(~p3 − ~p1)× (~p2 − ~p1)
XXXXXXXXX
,,

•�
�

�
�

◦
l l l l

~p1 · ~n

�� ��
UUUU

UUUU

From this we see that the distance to the plane is ~p1 · ~n and so

d⇐ −~p1 · ~n

The negative accounts for the fact that d itself is the negative distance
along ~n from the origin.

6.4 void geomRiP(P, ~o, ~d)

Computes the plane normal to ~d and containing the ray origin ~o.

•

����������

JJ ~d

~o

 UUUUUU UUUUUU

P

�
�

�
�◦

origin
Since we have already defined the plane in normal-distance form

P~n ⇐ ~d

The distance Pd along the normal is just the algebraic opposite of the length
of ~o projected onto ~d, but since ‖~d‖ = 1 this is simply

Pd ⇐ −~o · ~d

16

6.5 checked geomVVXiE(~e, ~v1, ~v2, ~x)

Locates a point in a 2–space given by two basis vectors.
Linear algebra tells us that

~e⇐ (~x · ~v1, ~x · ~v2)

Which is the amount of ~x in the ~v1 and ~v2 directions.

7 Special Functions

This section contains descriptions of the special functions, the include things
like rotation and classification, and other more esoteric operations.

7.1 void geomLXZrX(~x, ~o, ~d, ~x, z)

Rotates point ~x around line (~o, ~d) by angle z in radians.
This function uses the quaternion rotation of vector.c, which rotates a

point around some direction/vector with origin at the origin (0, 0, 0).

In order to rotate ~x around our line, we rotate ~x−~o around ~d. And then
add ~o back.

�?
jj

•

•

•

OO
~d

~o

~x

������������

~x
z

~x− ~o
W W W◦

~x− ~oa a a a◦

The equation for this operation is

~x⇐ (~x− ~o)
z
	 ~d+ ~o

7.2 void geomLRZrR(~o, ~d, ~ol, ~dl, ~or, ~dr)

Rotates a ray (~or, ~dr) around a line (~ol, ~dl).
The way to rotate a ray is to both rotate it’s origin and direction, thus

we have
~o⇐ (~or − ~ol)

z
	 ~dl + ~o

and
~d⇐ ~dr

z
	 ~dl

17

7.3 void geomTXcC(c, ~p1, ~p2, ~p3, ~x)

Classifies a point as inside or outside a triangle.
We do this by checking the relation of the point to the vector normal

to the edge in the plane of the triangle. In other words, we look at each
~vn = ~pn − ~x and compare it to the edge normal ~En = (~pn+1 − ~pn) × T~n.
Where T~n is P~n of the plane in which the triangle (~p1, ~p2, ~p3) lies.

cccccccccccccccYYYYYYYYYYYYYYYY(((((

���������

��x

//y

OO z

•~x

~p1

~p2

~p3 A
A

A
A

A
A

A

~v1

��������

◦ OOT~n
ffffff
33~E1

If ~x is behind the plane which lies along T~n and through edge (~pn, ~pn+1)

then ~pn − ~x will be in the same direction of ~En. And iff ~x lies behind all of
these planes, then it is “inside” the triangle. The dot product again comes
in handy to check the relative directionality of ~p− ~xn to ~En.

Let ~En be the exterior planar normal to edge en, or T~n× (~pn+1− ~pn), and
let ~vn be the difference vector ~p− ~xn, then

c⇐

{
1 if ∀n ~vn · ~En ≥ 0

0 if ∃n ~vn · ~En < 0

7.4 void geomTVXcC(c, ~p1, ~p2, ~p3, ~v, ~x)

This classifies a point as inside a triangle like before, but rather than using
the triangle normal T~n, it uses some passed in vector ~v. The affect this has
is to check if the point is inside the triangle along vector ~v.

If we redefine ~E to ~v × (~pn+1 − ~pn), then the same algorithm holds

c⇐

{
1 if ∀n ~vn · ~En ≥ 0

0 if ∃n ~vn · ~En < 0

7.5 void geomTRcC(c, ~p1, ~p2, ~p3, ~o, ~d)

This function classifies a ray as inside a triangle or not.

18

It is nothing more than a reformat of geomTVXcC. The geom library does
nothing more than call geomTVXcC(c, ~p1, ~p2, ~p3, ~d, ~o)

7.6 void geomPDXcC(c, P, ~a, ~b, ~x)

This classifies a point to being interior to a polygon/plane and an edge of
that polygon using the same algorithm as before.

This function generalizes interior checking for an arbitrary convex poly-
gon. To use it, simply check each side, if it classifies the point as inside
for every side, then the point is inside. Although geom takes a plane P , it
only uses the first three elements, so a vector ~v could be used instead (for
geomDVXcC style functionality).

c⇐

{
1 if P~n · ~En ≥ 0

0 if P~n · ~En < 0

7.7 checked geomSXcC(c, ~a, ~b, ~x)

Determines whether a point is “inside” a segment.
Inside a segment means between planes normal to the segment at the

endpoints.

iiRRRRiiRRRR

iiRRRRiiRRRR
������

a

b
•5

5
5

fff~x

So we just use a modified plane classification formulas, first we set up
our plane direction vector, ~d = (~b − ~a)/‖~b − ~a‖, and our distances from the

origin, s = −~d · ~a, and t = −~d ·~b.

c⇐

{
1 if ~x · ~d+ s > 0 and ~x · ~d− t < 0

0 if ~x · ~d+ s ≤ 0 or ~x · ~d− t ≥ 0

7.8 checked geomVVpV(~v, ~v, ~r)

Finds the projection of ~v on ~r. Although this function is entirely trivial, it is
here for completeness and to be checked in the same framework as the rest
of the library.

~v⇐ ~v · ~r
‖~r‖2

~r

19

7.9 void geomVUpV(~v, ~v, ~r)

Finds the projection of ~v on a unit vector ~r. Again, it is here for completeness
only.

~v⇐ (~v · ~r)~r

7.10 void geomRZiX(~x, ~o, ~d, z)

Locates a point z distance along the ray (~o, ~d).

•

ooooooooooo

77

oooooo
•

~o

~d
~x

This is simply
~x⇐ ~o+ z~d

20

A Extras

A.1 Types and operations as explained in geom.h

The types and naming conventions as explained in the C source file geom.h

/*--------------------\

| <<Naming>>

| geom{SrcTypes}{Operation(s)}{DstTypes}[fd](DstList..., SrcList...);

| Sources and destinations are listed

| 1. in size order, larger first, (see list below)

| 2. "operated on" before "environment" (project(dst, a, l))

| 3. as noted.

+---------------------+

| <<Types>>

| T:triangle : p1[3], p2[3], p3[3]

| L:line : origin[3], direction[3]

| R:ray : origin[3], direction[3]

| S:segement : a[3], b[3]

| D:edge : a[3], b[3], counter clockwise around polygon

| P:plane : p[4] = {A,B,C,D},

| defined by A*x + B*y + C*z + D == 0

| Q:2-space line : q[3] = {A,B,C},

| defined by A*x + B*y + C == 0

| V:vector : v[3]

| U:unit vector : v[3], norm3(v) == 1.0

| X:point : x[3]

| W:2-direction : w[2]

| E:2-point : e[2]

| Z:scalar : z

| C:class int : i, bool or enum

+---------------------+

| <<Operations>>

| x:intersection

| d:distance

| c:classification

| n:nearest

| i:interpret

| p:project

\---------------------*/
21

